翻訳と辞書
Words near each other
・ Iwade, Wakayama
・ Iwadeyama Castle
・ Iwadeyama Station
・ Iwadeyama, Miyagi
・ Iwafune Dam
・ Iwafune District, Niigata
・ Iwafune Station
・ Iwafune, Tochigi
・ Iwafunemachi Station
・ Iwagi, Ehime
・ Iwahana Station
・ Iwahara Station
・ Iwahashi Zenbei
・ Iwahig Prison and Penal Farm
・ Iwahori subgroup
Iwahori–Hecke algebra
・ Iwai
・ Iwai (surname)
・ Iwai Hanshiro I
・ Iwai Hanshiro V
・ Iwai Hanshiro VIII
・ Iwai Island
・ Iwai Rebellion
・ Iwai Station
・ Iwai, Ibaraki
・ Iwaichi Fujiwara
・ Iwaidja language
・ Iwaidjan languages
・ Iwaizumi Line
・ Iwaizumi Station


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Iwahori–Hecke algebra : ウィキペディア英語版
Iwahori–Hecke algebra
In mathematics, the Iwahori–Hecke algebra, or Hecke algebra, named for Erich Hecke and Nagayoshi Iwahori, is a one-parameter deformation of the group algebra of a Coxeter group.
Hecke algebras are quotients of the group rings of Artin braid groups. This connection found a spectacular application in Vaughan Jones' construction of new invariants of knots. Representations of Hecke algebras led to discovery of quantum groups by Michio Jimbo. Michael Freedman proposed Hecke algebras as a foundation for topological quantum computation.
==Hecke algebras of Coxeter groups==
Start with the following data:
* (''W'', ''S'') is a Coxeter system with the Coxeter matrix ''M'' = (''m''''st''),
* ''R'' is a commutative ring with identity.
* is a family of units of ''R'' such that ''qs'' = ''qt'' whenever ''s'' and ''t'' are conjugate in ''W''
* ''A'' is the ring of Laurent polynomials over Z with indeterminates ''qs'' (and the above restriction that ''qs'' = ''qt'' whenever ''s'' and ''t'' are conjugated), that is ''A'' = Z ()

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Iwahori–Hecke algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.